menu
Aptitude Overflow
Login
Register
search
Log In
account_circle
Log In
Email or Username
Password
Remember
Log In
Register
I forgot my password
Register
Username
Email
Password
Register
add
All Activity
Questions
Unanswered
Tags
Categories
Users
Ask a Question
Blogs
Exams
Quick search syntax
tags
tag:apple
author
user:martin
title
title:apple
content
content:apple
exclude
-tag:apple
force match
+apple
views
views:100
score
score:10
answers
answers:2
is accepted
isaccepted:true
is closed
isclosed:true
Categories
All categories
English Language
(1.6k)
Analytical Aptitude
(1.4k)
Quantitative Aptitude
(1.8k)
Spatial Aptitude
(8)
General Awareness
(139)
Computer Knowledge
(69)
Attitude and Leadership
(60)
Teaching Skills
(0)
Others
(1)
Recent Posts
UPSC CDS II 2021
HOW TO PREPARE FOR IELTS?
Previous Year CAT Papers
GRE Exam: New Test Pattern 2016 – 2017
Raise your Visibility to Attract GRE Test Takers
Recent questions tagged logarithms
Most popular tags
quantitative-aptitude
verbal-ability
logical-reasoning
passage-reading
logic-puzzles
english-language
data-interpretation
numerical-answer
tabular-data
geometry
cat1997
cat1995
cat1996
cat1998
cat2000
cat1999
cat2001
nielit2019feb-scientistd
nielit2019feb-scientistc
cat2003-2
cat2003-1
cat2002
sequences&series
sentence-rearrangement
number-systems
cat2004
appropriate-word
nielit2016mar-scientistd
cat2019-2
cat2018-2
cat2018-1
cat2017-2
cat2017-1
cat2016
cat2015
cat2019-1
general-awareness
cat2005
cat2008
speed-distance-time
bar-graph
algebra
cat2014
cat2020-set3
cat2020-set2
cat2020-set1
cat2006
cat2007
cat1994
percentage
multiple-sub-parts
computer-knowledge
cat2021-set1
cat2021-set3
cat2021-set2
ratio-proportion
work-time
attitude-and-leadership
nielit2016dec-scientistb
nielit2017oct-assistanta
nielit2017dec-assistanta
nielit2017july-scientistb
nielit2017dec-scientistb
cat2013
cat2012
cat2011
cat2010
fill-the-blank
odd-one-out
functions
permutation-combination
profit-loss
word-pairs
nielit2020nov-scientistb
cat2009
line-graph
sentence-formation
logarithms
quadratic-equations
graphs
most-appropriate-alternative
statement-sufficiency
paragraph-construction
average
alligation-mixture
time-and-distance
statements-conclusions
most-appropriate-option
mensuration
pie-chart
number-series
bars-charts
arithmetic-progression
error-spotting
inequalities
numerical-ability
seating-arrangement
code-language
absolute-value
nielit2016mar-scientistc
Recent questions tagged logarithms
1
vote
1
answer
1
CAT 2021 Set-3 | Quantitative Aptitude | Question: 3
For a real number $a,$ if $\dfrac{\log_{15}a + \log_{32}a}{(\log_{15}a)(\log_{32}a)} = 4$ then $a$ must lie in the range $a>5$ $3<a<4$ $4<a<5$ $2<a<3$
For a real number $a,$ if $\dfrac{\log_{15}a + \log_{32}a}{(\log_{15}a)(\log_{32}a)} = 4$ then $a$ must lie in the range $a>5$ $3<a<4$ $4<a<5$ $2<a<3$
asked
Jan 20
in
Quantitative Aptitude
soujanyareddy13
2.7k
points
●
5
●
88
●
352
68
views
cat2021-set3
quantitative-aptitude
logarithms
1
vote
1
answer
2
CAT 2021 Set-2 | Quantitative Aptitude | Question: 19
If $\log_{2} [3+ \log_{3} \{ 4+ \log_{4} (x-1) \}] – 2 = 0$ then $4x$ equals
If $\log_{2} [3+ \log_{3} \{ 4+ \log_{4} (x-1) \}] – 2 = 0$ then $4x$ equals
asked
Jan 20
in
Quantitative Aptitude
soujanyareddy13
2.7k
points
●
5
●
88
●
352
33
views
cat2021-set2
quantitative-aptitude
logarithms
numerical-answer
1
vote
1
answer
3
CAT 2021 Set-1 | Quantitative Aptitude | Question: 15
If $5 – \log_{10} \sqrt{1+x} + 4 \log_{10} \sqrt{1-x} = \log_{10} \frac{1}{\sqrt{1-x^{2}}},$ then $100x$ equals
If $5 – \log_{10} \sqrt{1+x} + 4 \log_{10} \sqrt{1-x} = \log_{10} \frac{1}{\sqrt{1-x^{2}}},$ then $100x$ equals
asked
Jan 19
in
Quantitative Aptitude
soujanyareddy13
2.7k
points
●
5
●
88
●
352
68
views
cat2021-set1
quantitative-aptitude
logarithms
numerical-answer
2
votes
1
answer
4
CAT 2020 Set-3 | Question: 51
If $\log_{a} 30 = \text{A}, \log_{a} (5/3) = – \text{B} $ and $\log_{2} a = 1/3,$ then $\log_{3}a $ equals $ \frac{2}{\text{A + B}} \;– 3 $ $ \frac{\text{A + B} - 3}{2} $ $ \frac{2}{\text{A + B} – 3} $ $ \frac{\text{A + B}}{2}\; – 3 $
If $\log_{a} 30 = \text{A}, \log_{a} (5/3) = – \text{B} $ and $\log_{2} a = 1/3,$ then $\log_{3}a $ equals $ \frac{2}{\text{A + B}} \;– 3 $ $ \frac{\text{A + B} - 3}{2} $ $ \frac{2}{\text{A + B} – 3} $ $ \frac{\text{A + B}}{2}\; – 3 $
asked
Sep 17, 2021
in
Quantitative Aptitude
soujanyareddy13
2.7k
points
●
5
●
88
●
352
121
views
cat2020-set3
quantitative-aptitude
logarithms
2
votes
1
answer
5
CAT 2020 Set-3 | Question: 73
$\dfrac{2 \times 4 \times 8 \times 16} {(\log_{2} 4)^{2} (\log_{4} 8)^{3} (\log_{8} 16)^{4}}$ equals
$\dfrac{2 \times 4 \times 8 \times 16} {(\log_{2} 4)^{2} (\log_{4} 8)^{3} (\log_{8} 16)^{4}}$ equals
asked
Sep 17, 2021
in
Quantitative Aptitude
soujanyareddy13
2.7k
points
●
5
●
88
●
352
106
views
cat2020-set3
quantitative-aptitude
logarithms
numerical-answer
3
votes
1
answer
6
CAT 2020 Set-2 | Question: 57
The value of $\log_{a} \left( \frac {a}{b} \right) + \log_{b} \left( \frac{b}{a} \right),$ for $ 1 < a \leq b$ cannot be equal to $ – 0.5$ $1$ $0$ $ – 1$
The value of $\log_{a} \left( \frac {a}{b} \right) + \log_{b} \left( \frac{b}{a} \right),$ for $ 1 < a \leq b$ cannot be equal to $ – 0.5$ $1$ $0$ $ – 1$
asked
Sep 17, 2021
in
Quantitative Aptitude
soujanyareddy13
2.7k
points
●
5
●
88
●
352
122
views
cat2020-set2
quantitative-aptitude
logarithms
2
votes
1
answer
7
CAT 2020 Set-1 | Question: 55
If $\log_4 5=\left ( \log _{4}y \right )\left ( \log _{6}\sqrt{5} \right )$, then $y$ equals
If $\log_4 5=\left ( \log _{4}y \right )\left ( \log _{6}\sqrt{5} \right )$, then $y$ equals
asked
Sep 16, 2021
in
Quantitative Aptitude
soujanyareddy13
2.7k
points
●
5
●
88
●
352
95
views
cat2020-set1
quantitative-aptitude
logarithms
numerical-answer
1
vote
1
answer
8
CAT 2020 Set-1 | Question: 58
If $y$ is a negative number such that $2^{y^{2}\log _{2}3}=5^{\log_{2}3}$, then $y$ equals $\log _{2}\left ( \frac{1}{3} \right )$ $-\log _{2}\left ( \frac{1}{3} \right )$ $\log _{2}\left ( \frac{1}{5} \right )$ $-\log _{2}\left ( \frac{1}{5} \right )$
If $y$ is a negative number such that $2^{y^{2}\log _{2}3}=5^{\log_{2}3}$, then $y$ equals $\log _{2}\left ( \frac{1}{3} \right )$ $-\log _{2}\left ( \frac{1}{3} \right )$ $\log _{2}\left ( \frac{1}{5} \right )$ $-\log _{2}\left ( \frac{1}{5} \right )$
asked
Sep 16, 2021
in
Quantitative Aptitude
soujanyareddy13
2.7k
points
●
5
●
88
●
352
111
views
cat2020-set1
quantitative-aptitude
logarithms
0
votes
1
answer
9
NIELIT 2019 Feb Scientist C - Section C: 1
If $\log _{e}x+\log _{e}(1+x)=0,$ then: $x^{2}+x-1=0$ $x^{2}+x+1=0$ $x^{2}+x-e=0$ $x^{2}+x+e=0$
If $\log _{e}x+\log _{e}(1+x)=0,$ then: $x^{2}+x-1=0$ $x^{2}+x+1=0$ $x^{2}+x-e=0$ $x^{2}+x+e=0$
asked
Apr 1, 2020
in
Quantitative Aptitude
Lakshman Patel RJIT
10.7k
points
●
119
●
744
●
834
135
views
nielit2019feb-scientistc
logarithms
1
vote
2
answers
10
NIELIT 2017 DEC Scientific Assistant A - Section A: 36
If $\log_{x}y=100$ and $\log_{2}x=10$, then the value of $y$ is : $2^{10}$ $2^{100}$ $2^{1000}$ $2^{10000}$
If $\log_{x}y=100$ and $\log_{2}x=10$, then the value of $y$ is : $2^{10}$ $2^{100}$ $2^{1000}$ $2^{10000}$
asked
Mar 31, 2020
in
Quantitative Aptitude
Lakshman Patel RJIT
10.7k
points
●
119
●
744
●
834
451
views
nielit2017dec-assistanta
numerical-ability
logarithms
1
vote
1
answer
11
CAT 2019 Set-2 | Question: 68
If x is a real number, then $\sqrt{\log _{e}\frac{4x-x^{2}}{3}}$ is a real number if and only if $1\leq x\leq 2$ $-3\leq x\leq 3$ $1\leq x\leq 3$ $-1\leq x\leq 3$
If x is a real number, then $\sqrt{\log _{e}\frac{4x-x^{2}}{3}}$ is a real number if and only if $1\leq x\leq 2$ $-3\leq x\leq 3$ $1\leq x\leq 3$ $-1\leq x\leq 3$
asked
Mar 20, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
154
views
cat2019-2
quantitative-aptitude
logarithms
1
vote
1
answer
12
CAT 2019 Set-2 | Question: 79
The real root of the equation $2^{6x}+2^{3x+2}-21=0$ is $\frac{\log_{2}7}{3}$ $\log_{2}9$ $\frac{\log_{2}3}{3}$ $\log_{2}27$
The real root of the equation $2^{6x}+2^{3x+2}-21=0$ is $\frac{\log_{2}7}{3}$ $\log_{2}9$ $\frac{\log_{2}3}{3}$ $\log_{2}27$
asked
Mar 20, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
222
views
cat2019-2
quantitative-aptitude
logarithms
3
votes
1
answer
13
CAT 2018 Set-2 | Question: 81
If $p^{3}=q^{4}=r^{5}=s^{6}$, then the value of $\log_{s}\left ( pqr \right )$ is equal to $16/5$ $1$ $24/5$ $47/10$
If $p^{3}=q^{4}=r^{5}=s^{6}$, then the value of $\log_{s}\left ( pqr \right )$ is equal to $16/5$ $1$ $24/5$ $47/10$
asked
Mar 20, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
206
views
cat2018-2
quantitative-aptitude
logarithms
3
votes
1
answer
14
CAT 2018 Set-2 | Question: 100
$\frac{1}{\log_{2}100} – \frac{1}{\log_{4}100} + \frac{1}{\log_{5}100} – \frac{1}{\log_{10}100} + \frac{1}{\log_{20}100} – \frac{1}{\log_{25}100} + \frac{1}{\log_{50}100}=?$ $1/2$ $0$ $10$ $-4$
$\frac{1}{\log_{2}100} – \frac{1}{\log_{4}100} + \frac{1}{\log_{5}100} – \frac{1}{\log_{10}100} + \frac{1}{\log_{20}100} – \frac{1}{\log_{25}100} + \frac{1}{\log_{50}100}=?$ $1/2$ $0$ $10$ $-4$
asked
Mar 20, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
255
views
cat2018-2
quantitative-aptitude
logarithms
2
votes
1
answer
15
CAT 2018 Set-1 | Question: 71
If $\log_2(5+\log_3a)=3$ and $\log_5(4a+12+\log_2b)=3$, then $a+b$ is equal to $67$ $40$ $32$ $59$
If $\log_2(5+\log_3a)=3$ and $\log_5(4a+12+\log_2b)=3$, then $a+b$ is equal to $67$ $40$ $32$ $59$
asked
Mar 20, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
179
views
cat2018-1
quantitative-aptitude
logarithms
2
votes
1
answer
16
CAT 2018 Set-1 | Question: 78
If $x$ is a positive quantity such that $2^x=3^{\log_52}$, then $x$ is equal to $1+\log_3\dfrac{5}{3}$ $\log_58$ $1+\log_5\dfrac{3}{5}$ $\log_59$
If $x$ is a positive quantity such that $2^x=3^{\log_52}$, then $x$ is equal to $1+\log_3\dfrac{5}{3}$ $\log_58$ $1+\log_5\dfrac{3}{5}$ $\log_59$
asked
Mar 20, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
157
views
cat2018-1
quantitative-aptitude
logarithms
2
votes
1
answer
17
CAT 2018 Set-1 | Question: 82
$\log_{12}81=p$, then $3\bigg (\frac{4-p}{4+p}\bigg)$ is equal to $\log_416$ $\log_68$ $\log_616$ $\log_28$
$\log_{12}81=p$, then $3\bigg (\frac{4-p}{4+p}\bigg)$ is equal to $\log_416$ $\log_68$ $\log_616$ $\log_28$
asked
Mar 20, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
171
views
cat2018-1
quantitative-aptitude
logarithms
1
vote
1
answer
18
CAT 2017 Set-2 | Question: 88
If $x$ is a real number such that $\log_{3}5=\log_{5}\left ( 2+x \right )$, then which of the following is true? $0<x<3$ $23<x<30$ $x>30$ $3<x<23$
If $x$ is a real number such that $\log_{3}5=\log_{5}\left ( 2+x \right )$, then which of the following is true? $0<x<3$ $23<x<30$ $x>30$ $3<x<23$
asked
Mar 16, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
147
views
cat2017-2
quantitative-aptitude
logarithms
1
vote
1
answer
19
CAT 2017 Set-1 | Question: 89
The value of $\log_{0.008}\sqrt{5}+\log_{\sqrt{3}}81-7$ is equal to $1/3$ $2/3$ $5/6$ $7/6$
The value of $\log_{0.008}\sqrt{5}+\log_{\sqrt{3}}81-7$ is equal to $1/3$ $2/3$ $5/6$ $7/6$
asked
Mar 13, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
126
views
cat2017-1
quantitative-aptitude
logarithms
1
vote
1
answer
20
CAT 2016 | Question: 96
If $\log_{10}x-\log_{10}\sqrt x=2 \log_x10$, then a possible value of $x$ is given by $10$ $1/100$ $1/1000$ None of these
If $\log_{10}x-\log_{10}\sqrt x=2 \log_x10$, then a possible value of $x$ is given by $10$ $1/100$ $1/1000$ None of these
asked
Mar 11, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
135
views
cat2016
quantitative-aptitude
logarithms
0
votes
1
answer
21
CAT 2015 | Question: 96
If $\log_{y}x=\left ( a \cdot \log_{z} y\right ) = \left ( b \cdot \log_{x}z \right )=ab,$ then which of the following pairs of values for $(a,b)$ is not possible? $(-2, 1/2)$ $(1, 1)$ $(\pi , 1/\pi )$ $(2 ,2)$
If $\log_{y}x=\left ( a \cdot \log_{z} y\right ) = \left ( b \cdot \log_{x}z \right )=ab,$ then which of the following pairs of values for $(a,b)$ is not possible? $(-2, 1/2)$ $(1, 1)$ $(\pi , 1/\pi )$ $(2 ,2)$
asked
Mar 9, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
119
views
cat2015
quantitative-aptitude
logarithms
1
vote
1
answer
22
CAT 2019 Set-1 | Question: 92
Let $x$ and $y$ be positive real numbers such that $\log _{5}(x+y)+\log _{5}(x-y)=3$, and $\log _{2}y-\log _{2}x=1-\log_{2}3$. Then $xy$ equals $250$ $25$ $100$ $150$
Let $x$ and $y$ be positive real numbers such that $\log _{5}(x+y)+\log _{5}(x-y)=3$, and $\log _{2}y-\log _{2}x=1-\log_{2}3$. Then $xy$ equals $250$ $25$ $100$ $150$
asked
Mar 8, 2020
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
275
views
cat2019-1
quantitative-aptitude
logarithms
1
vote
1
answer
23
CAT 2012 | Question: 25
If $\log _{x}(a-b)-\log _{x}(a+b)=\log _{x}\left(\dfrac{b}{a}\right)$, find $\dfrac{a^{2}}{b^{2}}+\dfrac{b^{2}}{a^{2}}$. $4$ $2$ $3$ $6$
If $\log _{x}(a-b)-\log _{x}(a+b)=\log _{x}\left(\dfrac{b}{a}\right)$, find $\dfrac{a^{2}}{b^{2}}+\dfrac{b^{2}}{a^{2}}$. $4$ $2$ $3$ $6$
asked
Mar 5, 2020
in
Quantitative Aptitude
Chandanachandu
308
points
●
7
●
61
●
66
202
views
cat2012
quantitative-aptitude
logarithms
1
vote
1
answer
24
CAT 2010 | Question: 15
If three positive real numbers $a, b$ and $c(c>a)$ are in Harmonic Progression, then $\log\left ( a+c \right )+\log\left ( a-2b+c \right )$ is equal to: $2\:\log\left ( c-b \right )$ $2\:\log\left ( a-c\right )$ $2\:\log\left ( c-a\right )$ $\log\:a+\log\:b+\log\:c$
If three positive real numbers $a, b$ and $c(c>a)$ are in Harmonic Progression, then $\log\left ( a+c \right )+\log\left ( a-2b+c \right )$ is equal to: $2\:\log\left ( c-b \right )$ $2\:\log\left ( a-c\right )$ $2\:\log\left ( c-a\right )$ $\log\:a+\log\:b+\log\:c$
asked
Mar 1, 2020
in
Quantitative Aptitude
Arjun
8.3k
points
●
55
●
131
●
178
350
views
cat2010
quantitative-aptitude
logarithms
1
vote
1
answer
25
CAT 2010 | Question: 14
If $a=b^{2}=c^{3}=d^{4}$ then the value of $\log_{a}\;(abcd)$ would be $\log_{a}1+\log_{a}2+\log_{a}3+\log_{a}4$ $\log_{a}24$ $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ $1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}$
If $a=b^{2}=c^{3}=d^{4}$ then the value of $\log_{a}\;(abcd)$ would be $\log_{a}1+\log_{a}2+\log_{a}3+\log_{a}4$ $\log_{a}24$ $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ $1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}$
asked
Mar 1, 2020
in
Quantitative Aptitude
Arjun
8.3k
points
●
55
●
131
●
178
217
views
cat2010
quantitative-aptitude
logarithms
1
vote
1
answer
26
what is difference between ???
Difference between (log^2) (n) ,log^2 n, log (log(n)) and (log(n)) ^2?
Difference between (log^2) (n) ,log^2 n, log (log(n)) and (log(n)) ^2?
asked
Oct 30, 2017
in
Quantitative Aptitude
learner_geek
56
points
●
2
●
5
474
views
quantitative-aptitude
logarithms
3
votes
1
answer
27
CAT 1994 | Question: 55
Choose the best alternative If $\log_{7} \log_{5} (x+5x+x)=0$; find the value of $x$. 1 0 2 None of these
Choose the best alternative If $\log_{7} \log_{5} (x+5x+x)=0$; find the value of $x$. 1 0 2 None of these
asked
Oct 12, 2017
in
Quantitative Aptitude
makhdoom ghaya
7.9k
points
●
236
●
900
●
1073
478
views
cat1994
quantitative-aptitude
logarithms
0
votes
1
answer
28
CAT 2003 | Question: 2-96
What is the sum of 'n' terms in the series: $\log m + \log \frac{m^2}{n} + \log \frac{m^3}{n^2} + \log \frac{m^4}{n^3} + \dots + \log \frac{m^n}{n^{n-1}}?$ $\log \left[\frac{n^{n-1}}{m^{(n+1)}} \right]^{\frac{n}{2}}$ ... $\log \left[\frac{m^{(n+1)}}{n^{(n-1)}} \right]^{\frac{n}{2}}$
What is the sum of 'n' terms in the series: $\log m + \log \frac{m^2}{n} + \log \frac{m^3}{n^2} + \log \frac{m^4}{n^3} + \dots + \log \frac{m^n}{n^{n-1}}?$ $\log \left[\frac{n^{n-1}}{m^{(n+1)}} \right]^{\frac{n}{2}}$ $\log \left[\frac{m^m}{n^n} \right]^{\frac{n}{2}}$ $\log \left[\frac{m^{(1-n)}}{n^{(1-m)}} \right]^{\frac{n}{2}}$ $\log \left[\frac{m^{(n+1)}}{n^{(n-1)}} \right]^{\frac{n}{2}}$
asked
May 5, 2016
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
262
views
cat2003-2
quantitative-aptitude
logarithms
0
votes
1
answer
29
CAT 2003 | Question: 2-93
If $\log_{10} x - \log_{10} \sqrt{x} = 2 \log_x 10$ then a possible value of $x$ is given by $10$ $\frac{1}{100}$ $\frac{1}{1000}$ None of these
If $\log_{10} x - \log_{10} \sqrt{x} = 2 \log_x 10$ then a possible value of $x$ is given by $10$ $\frac{1}{100}$ $\frac{1}{1000}$ None of these
asked
May 5, 2016
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
161
views
cat2003-2
quantitative-aptitude
logarithms
0
votes
1
answer
30
CAT 2003 | Question: 2-74
If $\frac{1}{3} \log_3 \text{M} + 3 \log_3 \text{N} =1 + \log_{0.008} 5$, then $\text{M}^9 = \frac{9}{\text{N}}$ $\text{N}^9 = \frac{9}{\text{M}}$ $\text{M}^3 = \frac{3}{\text{N}}$ $\text{N}^9 = \frac{3}{\text{M}}$
If $\frac{1}{3} \log_3 \text{M} + 3 \log_3 \text{N} =1 + \log_{0.008} 5$, then $\text{M}^9 = \frac{9}{\text{N}}$ $\text{N}^9 = \frac{9}{\text{M}}$ $\text{M}^3 = \frac{3}{\text{N}}$ $\text{N}^9 = \frac{3}{\text{M}}$
asked
May 5, 2016
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
274
views
cat2003-2
quantitative-aptitude
logarithms
0
votes
0
answers
31
CAT 2003 | Question: 1-140
if $\log_3\left(2^x - 5\right), \: \log_3\left(2^x - \frac{7}{2}\right)$ are in arithmetic progression, then the value of $x$ is equal to $5$ $4$ $2$ $3$
if $\log_3\left(2^x - 5\right), \: \log_3\left(2^x - \frac{7}{2}\right)$ are in arithmetic progression, then the value of $x$ is equal to $5$ $4$ $2$ $3$
asked
Feb 10, 2016
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
314
views
cat2003-1
quantitative-aptitude
logarithms
arithmetic-progression
0
votes
0
answers
32
CAT 2003 | Question: 1-106
When the curves, $y=\log_{10} x$ and $y=x^{-1}$ are drawn in the $x-y$ plane, how many times do they intersect for values $x \geq 1?$ Never Once Twice More than twice
When the curves, $y=\log_{10} x$ and $y=x^{-1}$ are drawn in the $x-y$ plane, how many times do they intersect for values $x \geq 1?$ Never Once Twice More than twice
asked
Feb 5, 2016
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
1.8k
views
cat2003-1
quantitative-aptitude
logarithms
0
votes
0
answers
33
CAT 2004 | Question: 70
Let $u=( \log_2 x)^2 – 6 \log_2 x + 12$ where $x$ is a real number. Then the equation $x^u =256$, has no solution for $x$ exactly one solution for $x$ exactly two distinct solutions for $x$ exactly three distinct solutions for $x$
Let $u=( \log_2 x)^2 – 6 \log_2 x + 12$ where $x$ is a real number. Then the equation $x^u =256$, has no solution for $x$ exactly one solution for $x$ exactly two distinct solutions for $x$ exactly three distinct solutions for $x$
asked
Jan 14, 2016
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
108
views
cat2004
quantitative-aptitude
logarithms
0
votes
0
answers
34
CAT 2005 | Question: 18
If $x \geq y$ and $y > 1$ then the value of the expression $\log_x\left(\frac{x}{y}\right) + \log_y\left(\frac{y}{x}\right)$ can never be $-1$ $-0.5$ $0$ $1$
If $x \geq y$ and $y > 1$ then the value of the expression $\log_x\left(\frac{x}{y}\right) + \log_y\left(\frac{y}{x}\right)$ can never be $-1$ $-0.5$ $0$ $1$
asked
Dec 29, 2015
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
117
views
cat2005
quantitative-aptitude
logarithms
0
votes
1
answer
35
CAT 2006 | Question: 74
If $\log_y x = a \cdot \log_z y = b \cdot \log_x z = ab$ then which of the following pairs of values for $(a,b)$ is not possible? $-2, 1/2$ $1,1$ $0.4, 2.5$ $\pi, 1/\pi$ $2,2$
If $\log_y x = a \cdot \log_z y = b \cdot \log_x z = ab$ then which of the following pairs of values for $(a,b)$ is not possible? $-2, 1/2$ $1,1$ $0.4, 2.5$ $\pi, 1/\pi$ $2,2$
asked
Dec 28, 2015
in
Quantitative Aptitude
go_editor
13.3k
points
●
309
●
2254
●
2467
274
views
cat2006
quantitative-aptitude
logarithms
To see more, click for the
full list of questions
or
popular tags
.
...