retagged by
2,203 views

1 Answer

1 votes
1 votes

Given that,  $|x^{2}-4x-13| = r\quad \longrightarrow (1)$

We know that, $|x| = \left\{\begin{matrix}x \;;&x \geq 0 \\ -x\;; &x<0 \end{matrix}\right.$

$\textbf{Case 1:}\; x^{2}-4x-13 = r$

$\Rightarrow x^{2}-4x-13-r = 0$

For two distinct real roots, the discriminant will be greater than zero.

$\Rightarrow D_{1}>0$

$\Rightarrow b^{2}-4ac>0 \quad [\because \text{For the quadratic equation}\; ax^{2} + bx +c = 0]$

$\Rightarrow (-4)^{2}-4(-13-r)>0$

$\Rightarrow 16+52+4r>0$

$\Rightarrow 4r+68>0$

$\Rightarrow \boxed{r>-17}$

$\textbf{Case 2:}\; x^{2}-4x-13 = -r$

$\Rightarrow x^{2}-4x-13+r = 0$

For one real root, the discriminant will be zero.

$\Rightarrow D_{2} =0$

$\Rightarrow b^{2}-4ac=0$

$\Rightarrow (-4)^{2}-4(1)(-13+r)=0$

$\Rightarrow 16+52-4r=0$

$\Rightarrow 68-4r=0$

$\Rightarrow 4r=68$

$\Rightarrow \boxed{r=17}$

$\therefore$ The value of $r = 17$

Correct Answer $:\text{C}$


$\textbf{PS:}$  

We know the quadratic formula is

$$x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$$

for any quadratic equation written in standard form of $ax^2+bx+c=0.$ The discriminant $D$ for the quadratic equation is

$$D=b^2-4ac,$$

where

$$\begin{cases} b^2-4ac \gt 0: & \text{two distinct real roots} \\ b^2-4ac=0: & \text{equal and real roots} \\ b^2-4ac \lt 0: & \text{imaginary roots}. \end{cases}​$$

edited by
Answer:

Related questions

0 votes
0 votes
0 answers
1
1 votes
1 votes
1 answer
2
soujanyareddy13 asked Jan 20, 2022
403 views
If $3x + 2|y| + y = 7$ and $ x + |x| + 3y = 1,$ then $x + 2y$ is$\frac{8}{3}$$1$$ – \frac{4}{3}$$0$
1 votes
1 votes
1 answer
3
soujanyareddy13 asked Jan 20, 2022
670 views
For a real number $x$ the condition $|3x – 20| + |3x – 40| = 20$ necessarily holds if$9 < x < 14$$6 < x < 11$$7 < x < 12$$10 < x < 15$
1 votes
1 votes
1 answer
4
soujanyareddy13 asked Jan 19, 2022
768 views
How many three-digit numbers are greater than $100$ and increase by $198$ when the three digits are arranged in the reverse order?