edited by
219 views
0 votes
0 votes

In triangle $\mathrm{A B C}$, altitudes $\mathrm{A D}$ and $\mathrm{B E}$ are drawn to the corresponding bases. If $\angle \mathrm{B A C}=45^{\circ}$ and $\angle \mathrm{A B C}=\theta$, then $\frac{A D}{B E}$ equals

  1. $\sqrt{2} \cos \theta$
  2. $1$
  3. $\sqrt{2} \sin \theta$
  4. $\frac{(\sin +\cos )}{\sqrt{2}}$

     

edited by

Please log in or register to answer this question.

Related questions

0 votes
0 votes
0 answers
2
0 votes
0 votes
0 answers
3
admin asked Feb 2, 2023
234 views
Regular polygons $\mathrm{A}$ and $\mathrm{B}$ have number of sides in the ratio $1: 2$ and interior angles in the ratio $3: 4$. Then the number of sides of $\mathrm{B}$ ...
0 votes
0 votes
0 answers
4
admin asked Feb 2, 2023
313 views
The number of distinct integer values of $n$ satisfying $\frac{4-\log 2 n}{3-\log _{4} n}<0$, is
0 votes
0 votes
0 answers
5
admin asked Feb 2, 2023
362 views
The average of a non-decreasing sequence of $\mathrm{N}$ numbers $a_{1}, a_{2}, \ldots \ldots, a_{N}$ is $300$ . If $a_{1}$ is replaced by $6 a_{1}$, the new average beco...