retagged by
1,294 views
1 votes
1 votes

Identical chocolate pieces are sold in boxes of two sizes, small and large. The large box is sold for twice the price of the small box. If the selling price $\text{per gram}$ of chocolate in the large box is $12 \%$ less than that in the small box, then the percentage by which the weight of chocolate in the large box exceeds that in the small box is nearest to

  1. $135$
  2. $127$
  3. $144$
  4. $124$
retagged by

1 Answer

1 votes
1 votes

We can draw the table for better understanding.

$$\begin{array}{l|cc} \hline  & \textbf{Small box} & \textbf{Large box} \\\hline \text{Selling price} & x & 2x \\ \text{Selling price per gram} & k & \left( \frac{88}{100}\right)k \\ \text{Weight} & \frac{x}{k} &  \dfrac{2x}{\left(\frac{88}{100}\right)k} = \left(\frac{25}{11}\right)\frac{x}{k} \\\hline \end{array}$$
$\therefore$ The weight of chocolate in the large box exceeds that in the small box $= \left[\dfrac{\left(\frac{25}{11}\right)\frac{x}{k}-\frac{x}{k}}{\frac{x}{k}}\right] \times 100\%$

$\qquad = \left(\frac{25-11}{11}\right) \times 100 \%= \left(\frac{14}{11}\right) \times 100 \%=127.2727\%\cong127\%.$


$\textbf{Shortcut Method:}$

We can also do that in a more simple way.

$$\begin{array}{l|cc} \hline  & \textbf{Small box} & \textbf{Large box} \\\hline \text{Selling price} & 1000 & 2000 \\ \text{Selling price per gram} & 100 & 88 \\ \text{Weight} & 10 & \frac{2000}{88} = \frac{250}{11} \\\hline \end{array}$$
$\therefore$ The weight of chocolate in the large box exceeds that in small box $= \left(\frac{\frac{250}{11}-10}{10}\right) \times 100\%$

$\qquad = \left(\frac{250-110}{110}\right) \times 100\%= \left(\frac{140}{110}\right) \times 100\%= \left(\frac{14}{11}\right) \times 100\%= 127.2727 \cong 127\%.$

Correct Answer $:\text{B}$

edited by
Answer:

Related questions

1 votes
1 votes
1 answer
2
soujanyareddy13 asked Jan 19, 2022
744 views
How many three-digit numbers are greater than $100$ and increase by $198$ when the three digits are arranged in the reverse order?
1 votes
1 votes
1 answer
4
soujanyareddy13 asked Jan 19, 2022
626 views
The natural numbers are divided into groups as $(1), (2,3,4), (5,6,7,8,9), \dots $ and so on. Then, the sum of the numbers in the $15 \text{th}$ group is equal to $6090$$...