in Quantitative Aptitude edited by
779 views
2 votes
2 votes
In a tournament, there are $43$ junior level and $51$ senior level participants. Each pair of juniors play one match. Each pair of seniors play one match. There is no junior versus senior match. The number of girl versus girl matches in junior level is $153$, while the number of boy versus boy matches in senior level is $276$. The number of matches a boy plays against a girl is _________
in Quantitative Aptitude edited by
13.8k points
779 views

1 Answer

1 vote
1 vote
Given that, in a tournament, there are $43$ junior level and $51$ senior-level participants ( Boys + Girls).

Let the number of girls in junior-level be $ \text{‘G’}. $

And, the number of boys in senior-level be $ \text{‘B’}.$

The number of girl Vs girl matches in junior-level $ = 153$

$ \Rightarrow \;^{\text{G}}c_{2} = 153 $

$ \Rightarrow \frac{\text{G!}}{(\text{G-2})! \; 2!} = 153 $

$ \Rightarrow \frac{\text{G (G-1) (G-2)!}} { \text{(G-2)}! \; 2!} = 153 $

$ \Rightarrow \text{G (G-1)} = 306 $

$ \Rightarrow \text{G}^{2} – \text{G} – 306 = 0 $

$ \Rightarrow \text{G}^{2} – 18 \text{G} + 17 \text{G} – 306 = 0 $

$ \Rightarrow \text{G(G-18)} + 17 \text{(G-18)} = 0 $

$ \Rightarrow \text{(G-18)(G+17)} = 0 $

$ \Rightarrow \boxed{ \text{G} = 18, \; – 17} $

Thus, the number of girls in junior level $ \boxed {\text{G}= 18} $

So, the number of boys in junior level $ = 43 – 18 = 25.$

The number of matches played between a boy and a girl $ = 25 \times 18 = 450 $

The number of boy Vs boy matches in senior-level $ = 276 $

$ \Rightarrow \;^{ \text{B}}c_{2} = 276 $

$ \Rightarrow \frac{\text{B}!}{(\text{B-2})! \; 2!} = 276 $

$ \Rightarrow \frac{\text{B(B-1)(B-2)!}} {(\text{B} – 2)! \; 2!} = 276 $

$ \Rightarrow \text{B}^{2} – \text{B} = 552 $

$ \Rightarrow \text{B}^{2} – \text{B} – 552 = 0 $

$ \Rightarrow \text{B}^{2} – 24\text{B} + 23 \text{B} – 552 = 0 $

$ \Rightarrow \text{B(B-24)} + 23 \text{(B-24)} = 0 $

$ \Rightarrow \text{(B-24)(B+23)} = 0 $

$ \Rightarrow \boxed{\text{B} = 24, \; -23 } $

Thus, the number of boys in senior level $ \boxed{ \text{B} = 24} $

So, the number of girls in senior level $ = 51 – 24 = 27.$

The number of matches played between a boy and a girl $ = 27 \times 24 = 648.$

$\therefore$ The number of matches a boy plays against a girl $ = 450 + 648 = 1098.$

Correct Answer $:1098$

$\textbf{PS:}$ Among a group of $n$ person, number of matches played between them $ = \;^{n}c_{2} $

$\quad = \frac{n!}{(n-2)! \; 2 \times1} $

$\quad = \frac{n(n-1)(n-2)!}{(n-2)! \; 2 \times 1} $

$\quad = \frac{n(n-1)}{2} $
edited by
11.6k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true