retagged by
635 views

1 Answer

1 votes
1 votes

Given that,

$ 4^{n}  > 17^{19} $

Taking the $ \log_{10}$ both sides.

$ \log_{10}4^{n} > \log_{10} 17^{19} $

$ \Rightarrow n \log_{10}4 > 19 \log_{10}17 \quad [ \because \log_{b}a^{x} = x \log_{b}a] $

$ \Rightarrow n > 19 \left( \frac{\log_{10}17}{ \log_{10}4} \right) $

$ \Rightarrow n > 19 ( \log_{4}17) \quad \left[ \because \log_{b}a = \frac{ \log_{x}a}{ \log_{x}b} \right] $

For easy calculation, let us assume $17 \approx 16.$

Now, $ n > 19 ( \log_{4} 16)$

$ \Rightarrow n > 19 ( \log_{4} 4^{2})$

$ \Rightarrow n > 19 \times 2 ( \log_{4}4)$

$ \Rightarrow \boxed{n >38} \quad [ \because \log_{a}a = 1 ] $

$ \Rightarrow \boxed{n \simeq 39} $

$\therefore$ The small integer $n$ is closed to $39.$


$\textbf{Short Method :}$

Given that, $ 4^{n} > 17^{19} $

$ \Rightarrow \left( 4^{2} \right)^{\frac{n}{2}} > 17^{19} $

$ \Rightarrow (16)^{\frac{n}{2}} > 17^{19} $

Here, $ 16 < 17 ,$ so $ \frac{n}{2}$ must be greater than $19.$

Thus, $ \frac{n}{2} > 19 $

$ \Rightarrow n > 38 $

$ \Rightarrow \boxed{n \simeq 39} $

Correct Answer $:\text{C}$

edited by
Answer:

Related questions

3 votes
3 votes
1 answer
1
go_editor asked Mar 20, 2020
726 views
How many two-digit numbers, with a non-zero digit in the units place, are there which are more than thrice the number formed by interchanging the positions of its digits?...
2 votes
2 votes
1 answer
2
go_editor asked Mar 20, 2020
806 views
The smallest integer $n$ such that $n^{3} - 11n^{2} + 32n - 28 >0$ is
2 votes
2 votes
1 answer
3
go_editor asked Mar 20, 2020
678 views
If $\text{N}$ and $x$ are positive integers such that $\text{N}^{\text{N}}=2^{160}$ and $\text{N}^{2} + 2^{\text{N}}$ is an integral multiple of $2^{x}$, then the largest...
2 votes
2 votes
1 answer
4
go_editor asked Mar 20, 2020
599 views
Let $t_{1}, t_{2},\dots$ be a real numbers such that $t_{1}+t_{2}+\dots+t_{n}=2n^{2}+9n+13$, for every positive integers $n\geq2$.If $t_{k}=103$ , then $k$ equals