retagged by
553 views

1 Answer

Best answer
2 votes
2 votes

Given that, $ 2^{x} = 3^{\log_{5}{2}}$

Taking $\log_{2}$ on both sides.

$ \log_{2}{2}^{x} = \log_{2} \left( 3^{\log_{5}{2}} \right) $

$ \Rightarrow x = \log_{5}{2} \log_{2}{3}$ $\quad [\because{ \log_{a}{a}} = 1, \log_{b}{a}^{x} = x \log_{b}{a}$]

$ \Rightarrow x = \frac{\log_{2}{3}}{\log_{2}{5}}$ $\quad \left [ \therefore \log_{a}{b} = \frac{1}{\log_{b}{a}} \right]$

$ \Rightarrow \boxed{x = \log_{5}{3}}$ $\quad \left[ \therefore \frac{\log_{c}{a}}{\log_{c}{b}} = \log_{b}{a} \right]$

Now, we can check all the options.

  1. $1+\log_{3}{\frac{5}{3}} = 1 + \log_{3}{5} – \log_{3}{3}$

$ \qquad \qquad \quad =1 + \log_{3}{5} – 1 $

$ \qquad \qquad \quad = \log_{3}{5} $

Option $ \text {(B)}$ and $ \text{(D)}$ are not possible.

  1. $1+\log_{5}{\frac{3}{5}} = 1 + \log_{5}{3} – \log_{5}{5}$

$\qquad \qquad \quad=1 + \log_{5}{3} – 1 $

$\qquad \qquad \quad = \log_{5}{3} $

Correct Answer $: \text{C}$

selected by
Answer:

Related questions

2 votes
2 votes
1 answer
1
go_editor asked Mar 19, 2020
575 views
If $\log_2(5+\log_3a)=3$ and $\log_5(4a+12+\log_2b)=3$, then $a+b$ is equal to$67$$40$$32$$59$
2 votes
2 votes
1 answer
2
go_editor asked Mar 19, 2020
545 views
$\log_{12}81=p$, then $3\bigg (\frac{4-p}{4+p}\bigg)$ is equal to $\log_416$$\log_68$$\log_616$$\log_28$
2 votes
2 votes
1 answer
3
go_editor asked Mar 19, 2020
560 views
Let $x, y, z$ be three positive real numbers in a geometric progression such that $x < y < z$. If $5x$, $16y$, and $12z$ are in an arithmetic progression then the common ...
3 votes
3 votes
1 answer
5
go_editor asked Mar 19, 2020
731 views
Given that $x^{2018}y^{2017}=1/2$ and $x^{2016}y^{2019}=8$, the value of $x^2+y^3$ is$35/4$$37/4$$31/4$$33/4$